
Simplifying Your Approach to Precision Oncology

The Importance of a Precision Oncology Approach

Cancer Is Driven by Genomic Alterations¹

- Historically, cancer has been defined by its site of origin²
- Today, certain cancers are increasingly being defined by genomic alterations (eg, point mutations, gene fusions) capable of driving proliferation¹⁻³

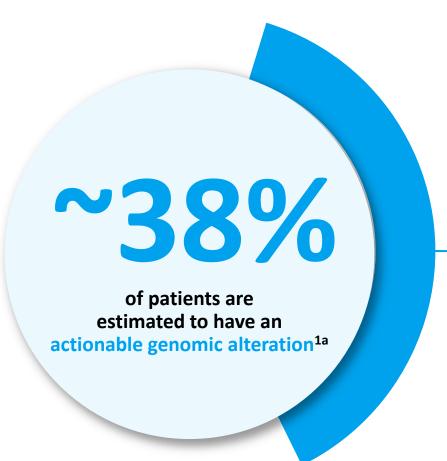
Precision oncology defines cancers by their UNDERLYING GENOMIC CHANGES^{2,4}

FISH, fluorescence in situ hybridization; IHC, immunohistochemistry; NGS, next-generation sequencing; RT-PCR, reverse transcription-polymerase chain reaction.

1. Zhang R et al. *Front Oncol.* 2021;10:544579. doi:10.3389/fonc.2020.544579 2. Adashek JJ et al. *Trends Cancer.* 2021;7(1):15-28. doi:10.1016/j.trecan.2020.08.009 3. Zhang B et al. *Medicine (Baltimore).* 2022;10(43):e31380. doi:10.1097/MD.00000000031380 4. Malone ER et al. *Genome Med.* 2020;12:8. doi:10.1186/s13073-019-0703-1

Precision Oncology Focuses on a Tumor's Specific Genomic Profile^{1,2}

Precision Treatment Approach



Precision oncology **aims to optimize and tailor each patient's treatment approach** based on the genomic profile of the patient's cancer³

- Genomic profiles can⁴
 - Assist in optimal patient selection
 - Inform treatment decision making

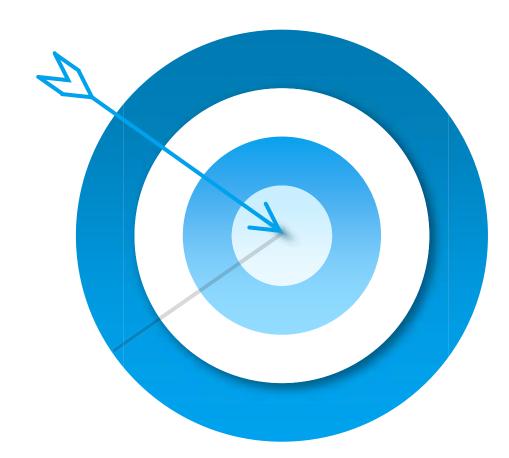
1. Adashek JJ et al. Trends Cancer. 2021;7(1):15-28. doi:10.1016/j.trecan.2020.08.009 2. Malone ER et al. Genome Med. 2020;12:8. doi:10.1186/s13073-019-0703-1 3. Rodriguez-Rodriguez L et al. In: Rodriguez-Rodriguez L, ed. Rutgers University Press; 2019;ix. 4. El Deiry WS et al. CA Cancer J Clin. 2019;69(4):305-343. doi:10.3322/caac.21560

Genomic Alterations Increasingly Impact Treatment Decisions

- A genomic alteration is defined as actionable when it has the potential to <u>directly impact clinical decision making</u>^{2,3}
- Although their prevalence may vary by cancer type, genomic alterations in totality are found in a significant percentage of patients with cancer^{1,4-7}
- Genomic alterations may drive selection of a specific targeted agent or help rule out therapies that may not benefit the patient^{2,3}
- >50 oncology drugs with genomic indications were approved between 2006 and 2024⁸⁻¹⁰

^aNCI-MATCH trial investigated the frequency of actionable genetic alterations in 5,954 US patients with advanced refractory cancer.¹

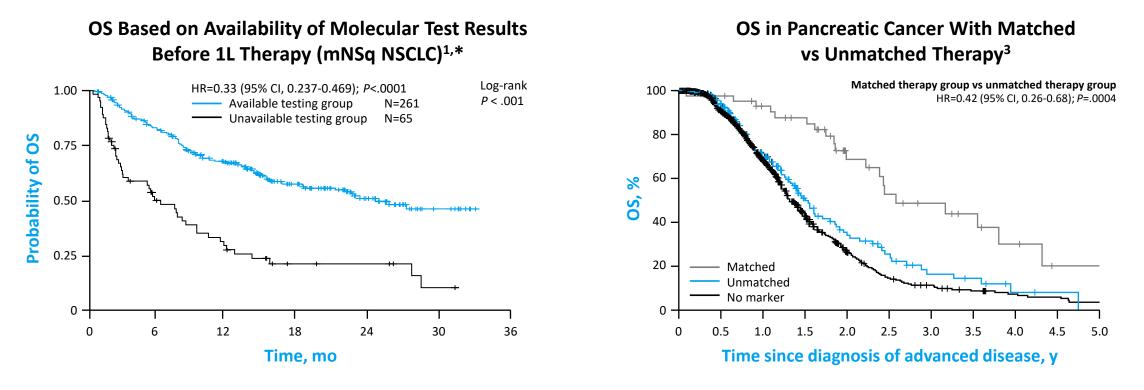
1. Flaherty KT et al. J Clin Oncol. 2020;38(33): 3883-3895 2. Yates LR et al. Ann Oncol. 2018;29(1):30-35. doi:10.1093/annonc/mdx707 3. Vidwans SJ, et al. Oncoscience. 2014;1(10):614-623.. Doi:10.18632/oncoscience.90 4. Priestley P et al. Nature. 2019;575(7781):210-216. doi:10.1038/s41586-019-1689-y 5. Tuxen IV et al. Clin Cancer Res. 2019;25(4):1239-1247. doi:10.1158/1078-0432.CCR-18-1780 6. Bertucci F et al. Genome Med. 2021;13(1):87. doi:10.1186/s13073-021-00897-9 7. Cobain EF et al. JAMA Oncol. 2021;7(4):525-533. doi:10.1001/jamaoncol.2020.7987 8. Haslam A et al. Eur J Cancer. 2022;160:175-179. doi:10.1016/j.ejca.2021.10.028 8. 9. Suehnholz SP et al. Cancer Discov. 2024;14(1):49-65. doi:10.1158/2159-8290.CD-23-0467 10. US Food and Drug Administration. Accessed July 1, 2024. https://www.fda.gov/drugs/resources-information-approved-drugs/oncology-cancer-hematologic-malignancies-approval-notifications


Data Establishing the Role of Clinically Actionable Genomic Markers Are Increasing¹

ALK, anaplastic lymphoma kinase; BCR-ABL, breakpoint cluster region-Abelson murine leukemia homolog 1; BRAF, rapidly accelerated fibrosarcoma B1; EGFR, epidermal growth factor receptor; FGFR, fibroblast growth factor receptor; HER2, human epidermal growth factor receptor 2; KRAS, Kirsten rat sarcoma; MET, mesenchymal-epithelial transition; METex14, mesenchymal-epithelial transition exon 14 skipping; MSI-H/dMMR, microsatellite instability-high/mismatch repair deficiency; NRG1, neuregulin 1; NTRK, neurotrophic tyrosine receptor kinase; PIK3CA, phosphatidylinositol-4, 5-bisphosphate 3-kinase catalytic subunit alpha; RET, rearranged during transfection; ROS1, repressor of silencing 1.

1. Malone ER et al. Genome Med. 2020;12:8. doi:10.1186/s13073-019-0703-1 2. Suehnholz SP et al. Cancer Discov. 2024;14(1):49-65. doi:10.1158/2159-8290.CD-23-0467 3. Marcus L et al. Clin Cancer Res. 2019;25(13):3753-3758. doi:10.1158/1078-0432.CCR-18-4070 4. Hoy SM. Drugs. 2023;83(6):555-561. doi:10.1007/s40265-023-01861-0 5. Kucharczyck T, et al. Cancers (Basel). 2024;16(15):2766. doi:10.3390/cancers16152766

Genomic Profile-Guided Treatment Decisions Are the Future of Precision Oncology



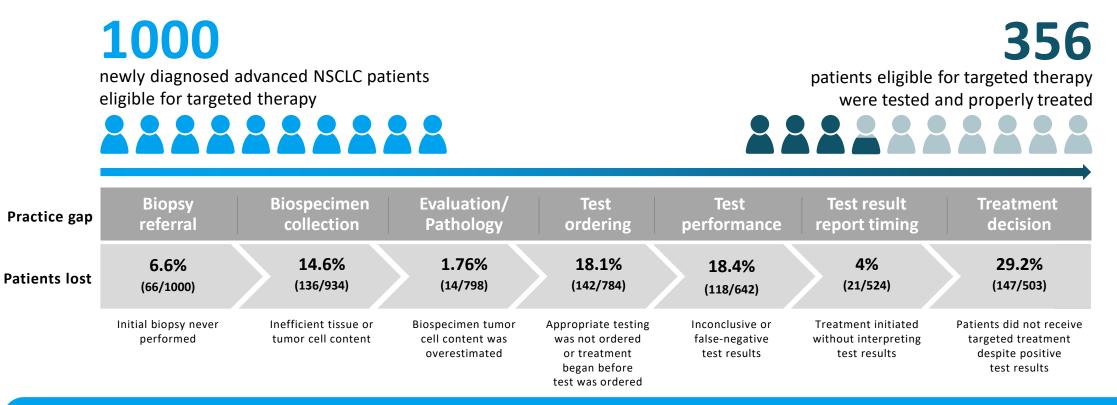
- Understanding a patient's genomic profile and their oncogenic drivers can guide physicians toward a more tailored treatment approach^{1,2}
- Knowledge of a patient's genomic profile can also eliminate inappropriate or less effective treatment choices³

1. El-Deiry WS et al. CA Cancer J Clin. 2019;69(4):305-343. doi:10.3322/caac.21560 2. Faulkner E et al. Value Health. 2020;23(5):529-539. doi:10.1016/j.jval.2019.11.010 3. Thomas DM et al. Public Health Genomics. 2022;25:70-79. doi:10.1159/000520000

Targeting Genomic Alterations Can Lead to Better Outcomes for Patients^{1,2}

Knowledge of a tumor's genomic profile may substantially impact disease management decisions and patient outcomes^{1,2}

In both studies, OS was improved in patients who received therapies directed toward their specific alterations.^{1,3}


1L, first-line; HR, hazard ratio; mNSq, metastatic non-squamous; NSCLC, non-small cell lung cancer; OS, overall survival.

*Retrospective data collected between January 1, 2019 and December 31, 2020.

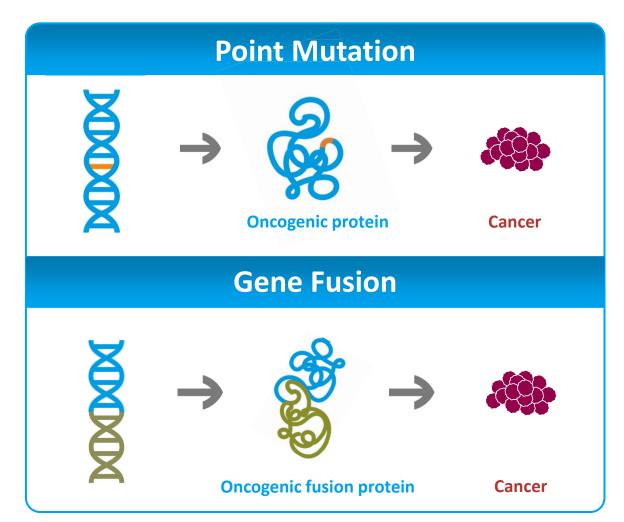
1. Aggarwal C et al. JCO Precis Oncol. 2023;7:e2300191. doi:10.1200/PO.23.00191 2. Zhao S et al. BMC Med. 2021;19:223. doi:10.1186/s12916-021-02089-z 3. Pishvaian MJ et al. Lancet Oncol. 2020;21(4):508-518. doi:10.1016/S1470-2045(20)30074-7

Visit **FindTheFusions.com** to download this presentation.

Many patients eligible for precision oncology treatments are lost due to clinical practice gaps

Nearly 64% of potentially eligible patients

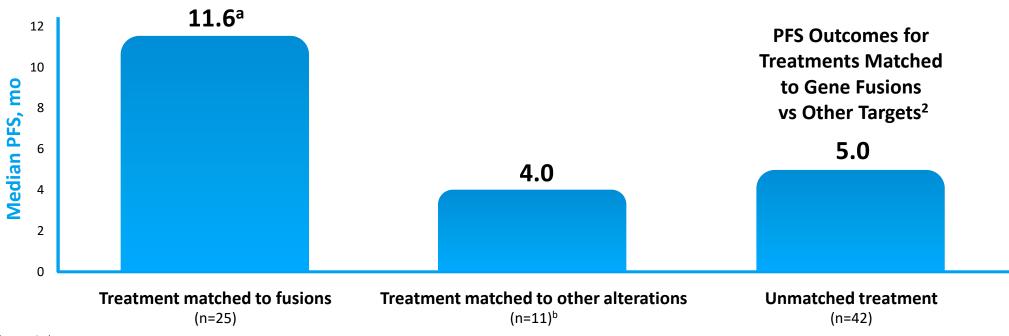
with advanced NSCLC did not receive precision oncology therapies


aNSCLC, advanced non-small cell lung cancer. Data was collected from Diaceutics DXRX Data Repository.

1. Sadik H et al. *JCO Precision Oncology*. 2022; 1-10. doi:10.1200/PO.22.00246

There Are Different Types of Genomic Alterations That Drive Cancer

Common types of genomic alterations include point mutations and pathogenic gene fusions¹


- Point mutations are changes in DNA base pairs²
 - Examples include BRAF and EGFR³
- Pathogenic gene fusions typically occur when 2 different genes join to form an abnormal hybrid gene⁴
 - Examples include ALK, NTRK, ROS1, and NRG1^{3,5}
 - Genes involved in fusions are not located next to one another but are from separate chromosomal loci⁶
 - Gene fusions can be comprised of multiple fusion partners⁷

1. Zhang R et al. *Front Oncol.* 2021;10:544579. doi:10.3389/fonc.2020.544579 **2**. Gunter C. Updated December 8, 2022. Accessed April 24, 2023. https://www.genome.gov/genetics-glossary/Point-Mutation **3**. Malone ER et al. *Genome Med.* 2020;12:8. doi:10.1186/s13073-019-0703-1 **4**. Latysheva NS, Babu MM. *Nucleic Acids Res.* 2016;44(10):4487-4503. doi:10.1093/nar/gkw282 **5**. Drilon A et al. *J Clin Oncol.* 2021;39(25):2791-2802. doi:10.1200/JCO.20.03307 **6**. Barr FG. *Expert Rev Mol Diagn.* 2016;16(9):921-923. doi:10.1080/14737159.2016.1220835 **7**. Stangl C et al. *Nat Commun.* 2020;11(1):2861. doi:10.1038/s41467-020-16641-7

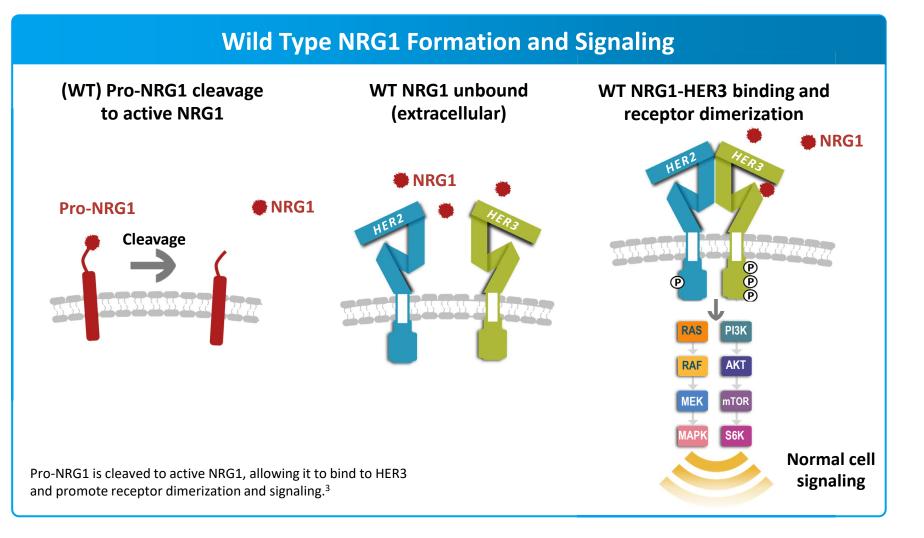
– Pathogenic Gene Fusions Can Be Strong Oncogenic Drivers^{1,2}

In an analysis of 79 patients with identified gene fusions, poorer outcomes were observed in patients with pathogenic gene fusions who were not matched to an FDA-approved fusion-targeted therapy²

PFS, progression-free survival.

^aComparison of patients matched to fusions vs those unmatched to fusions, including unmatched to other alterations or unmatched, was significant by log-rank test (*P*=.034).²

^bTwelve of the 79 patients received treatment matched to other alterations, but one patient in the matched group had an unclear match and was excluded from the pair-wise comparison analysis.²


1. Gao Q et al. Cell Rep. 2018;23(1):227-238. doi:10.1016/j.celrep.2018.03.050 2. Nikanjam M et al. Cancer. 2020;126(6):1315-1321. doi:10.1002/cncr.32649

NRG1 An Example of an Important Pathogenic Gene Fusion

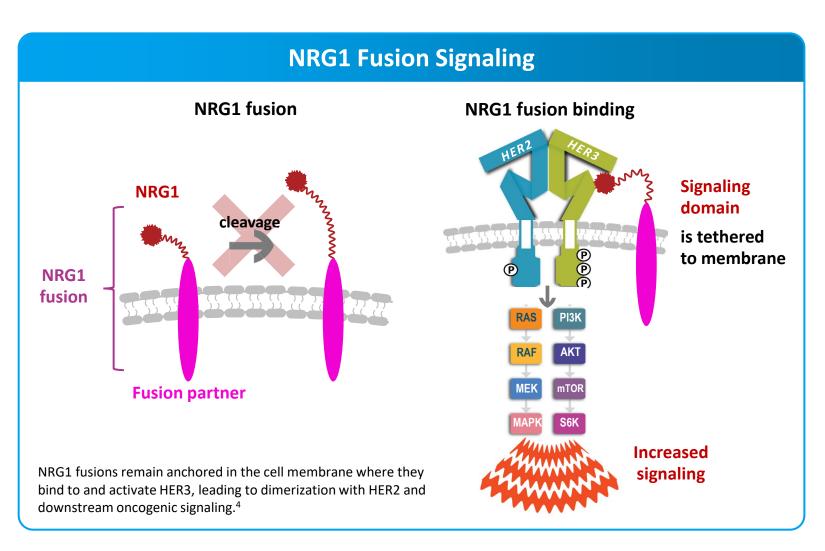
NRG1 Is Important for Normal Cellular Development^{1,2}

NRG1 is a key signaling protein involved in proliferation and survival^{1,2}

- NRG1 normally is inactive until it is cleaved by proteases at the cell surface³
- Extracellular binding of NRG1 induces receptor dimerization and activation of PI3K- and RAS-mediated growth pathways^{3,4}

HER3, human epidermal growth factor receptor 3; WT, wild type.

1. Mujoo K et al. Oncotarget. 2014;5(21):10222-10236. doi:10.18632/oncotarget.2655 2. Teo JCM et al. In: Lee SJ et al, eds. Academic Press; 2016:313-344. 3. Laskin J et al. Ann Oncol. 2020;31(12):1693-1703. doi:10.1016/j.annonc.2020.08.2335 4. Zhang C et al. Biochim Biophys Acta Rev Cancer. 2022;1877(3):188707. doi:10.1016/j.bbcan.2022.188707


NRG1 Fusions Result in Increased Cell Signaling and Growth^{1,2}

NRG1 fusions induce receptor dimerization and result in aberrant cell signaling^{3,4}

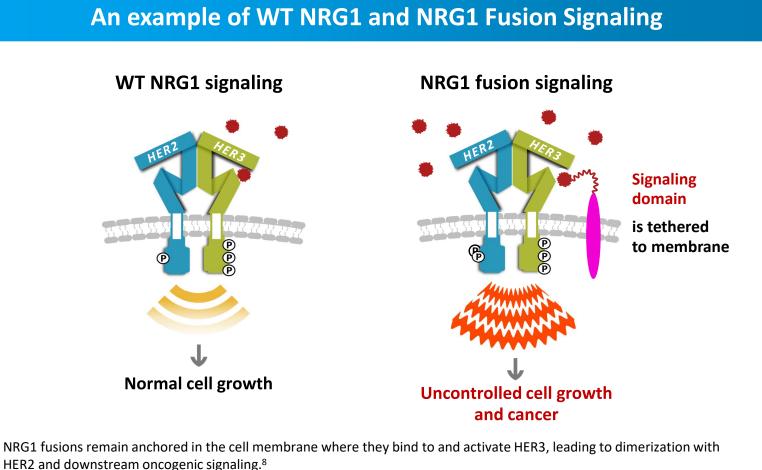
NRG1 fusions

- Are heterogenous and have many different gene partners and breakpoints⁵
- Cannot be cleaved by cell surface proteases resulting in increased expression of the fusions at the cell surface³
- Retain the signaling domain of WT NRG1^{4,6}

Certain NRG1 fusions are membrane bound resulting in increased cell signaling⁴

1. Schram AM et al. *Cancer Discov*. 2022;12(5):1233-1247. doi:10.1158/2159-8290.CD-21-1119 2. Geuijen CAW et al. *Cancer Cell*. 2018;33(5):922-936. doi:10.1016/j.ccell.2018.04.003 3. Laskin J et al. *Ann Oncol*. 2020;31(12):1693-1703. doi:10.1016/j.annonc.2020.08.2335 4. Zhang C et al. *Biochim Biophys Acta Rev Cancer*. 2022;1877(3):188707. doi:10.1016/j.bbcan.2022.188707 5. Drilon A et al. *J Clin Oncol*. 2021;39(25):2791-2802. doi:10.1200/JCO.20.03307 6. Howarth KD et al. *Breast Cancer Res*. 2021;23(1):3. doi:10.1186/s13058-020-01377-5

NRG1 Fusions Can Lead to Uncontrolled Growth and Cancer^{1,2}


Cancers resulting from *NRG1* gene fusions are reported to be aggressive and associated with poor outcomes³⁻⁷

NRG1 fusions can lead to

- Enhanced pathologic activation of PI3Kand RAS-mediated pathways^{6,8}
- Abnormal cell proliferation^{6,8}

NRG1+ tumors

- Have histologic features associated with growth, recurrence, invasiveness, metastasis, resistance to therapy, and worse prognosis³⁻⁷
- Respond poorly to available therapies and are associated with lower OS, DFS, and PFS in lung cancer^{4-7,9}

DFS, disease-free survival; NRG1+, neuregulin 1 fusion positive.

Schram AM et al. Cancer Discov. 2022;12(5):1233-1247. doi:10.1158/2159-8290.CD-21-1119 2. Geuijen CAW et al. Cancer Cell. 2018;33(5):922-936. doi:10.1016/j.ccell.2018.04.003 3. Dhanasekaran SM et al. Nat Commun. 2014;5:5893. doi:10.1038/ncomms6893
Rosas D et al. Cancers (Basel). 2021;13(20):5038. doi:10.3390/cancers13205038 5. Drilon A et al. J Clin Oncol. 2021;39(25):2791-2802. doi:10.1200/JCO.20.03307 6. Laskin J et al. Ann Oncol. 2020;31(12):1693-1703. doi:10.1016/j.annonc.2020.08.2335 7. Shin DH et al. Oncotarget. 2016;7(43):69450-69465. doi:10.18632/oncotarget.11913 8. Zhang C et al. Biochim Biophys Acta Rev Cancer. 2022;1877(3):188707. doi:10.1016/j.bbcan.2022.188707 9. Jones MR et al. Clin Cancer Res. 2019;25(15):4674-4681. doi:10.1158/1078-0432.CCR-19-0191

- NRG1 Gene Fusions Can Occur in Many Types of Solid Tumors¹

NRG1 Fusion Frequency Estimates^a

	Overall	Enrichment
	Lung cancer (0.3%-1.7%) ^{1,2}	Invasive mucinous Iung adenocarcinoma (7%-31%) ^{3,5,7,8}
C	Pancreatic cancer $(0.5\%-1.8\%)^{2,4}$	KRAS wild-type pancreatic cancer (up to 6%) ⁶
	Other (<1%, eg, breast, cholangiocarcinoma, colorectal cancers) ²	

- Enrichment is observed in some tumors, particularly^{2,6}
 - Invasive mucinous lung adenocarcinoma
 - NSCLC that is negative for other driver mutations
 - KRAS wild-type pancreatic cancer
- *NRG1* fusions more commonly occur in the absence of other driver mutations⁶

^aThe frequency of *NRG1* tumors is still under investigation and can vary significantly based on testing methodology.²

1. Drilon A et al. *Cancer Discov.* 2018;8(6):686-695. doi:10.1158/2159-8290.CD-17-1004 **2**. Jonna S et al. *Clin Cancer Res.* 2019;25(16):4966-4972. doi:10.1158/1078-0432.CCR-19-0160 **3**. Laskin J et al. *Ann Oncol.* 2020;31(12):1693-1703. doi:10.1016/j.annonc.2020.08.2335 **4**. Knepper TC et al. *J Clin Oncol.* 2022;40(suppl 16):4155. doi:10.1200/JCO.2022.40.16_suppl.4155 **5**. Chang J et al. *Clin Cancer Res.* 27(14):4066-4076. doi: 10.1158/1078-0432.CCR-21-0423. **6**. Jones MR et al. *Clin Cancer Res.* 2019;25(15):4674-4681. doi:10.1158/1078-0432.CCR-19-0191 **6**. Drilon A et al. *J Clin Oncol.* 2021;39(25):2791-2802. doi:10.1200/JCO.20.03307 **7.** Shin DH et al. *Oncotarget.* 2016;7(43):69450-69465. doi:10.18632/oncotarget.11913 **8**.Trombetta D et al. *Oncotarget.* 2018;9(11):9661-9671. doi:10.18632/oncotarget.23800

NRG1+ Tumors Can Be Aggressive and Respond Poorly to Existing Standard of Care^{1,2}

In a retrospective global registry study of 110 patients, *NRG1*+ NSCLC was associated with limited response to available therapies³

Activity of Systemic Therapy in NRG1+ NSCLC^{3,*}

	ORR, %	Median PFS, mo (95% Cl)
Platinum-doublet chemotherapy (n=15)	13	5.8 (2.2-9.8)
Taxane-based chemotherapy (n=7)	14	4.0 (0.8-5.3)
Combination chemotherapy and immunotherapy (n=9)	0	3.3 (1.4-6.3)
Single-agent immunotherapy (n=5)	20	3.6 (0.9-undefined)
Targeted therapy with kinase inhibitor (n=20)	25	2.8 (1.9-4.3)

ORR, overall response rate.

*Patients either diagnosed with or who developed metastatic disease during the course of their disease.

1. Rosas D et al. Cancers (Basel). 2021;13(20):5038. doi:10.3390/cancers13205038 2. National Institutes of Health, National Cancer Institute. Accessed April 24, 2023. https://www.cancer.gov/types/lung/patient/non-small-cell-lung-treatment-pdq 3. Drilon A et al. J Clin Oncol. 2021;39(25):2791-2802. doi:10.1200/JCO.20.03307

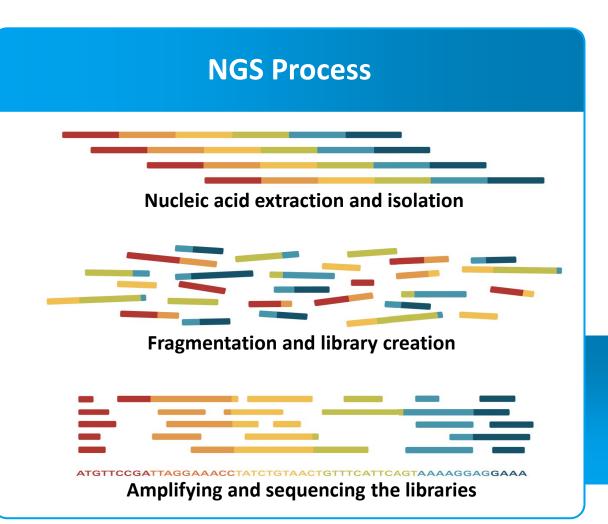
Testing With Both DNA and RNA (RNA-Based NGS) Is the Key to Finding Actionable Alterations

Classical Biomarker Screening Methods Were Developed to Detect Single Molecular Targets^{1,2}

Conventional test methods limit the ability to detect many pathogenic gene fusions.

Limitations include

- Inability to identify the full breadth of genomic alterations³
- Limited ability to identify full breadth of fusion partners and breakpoints¹
 - May require a significant amount of tissue and can exhaust tissue samples⁴

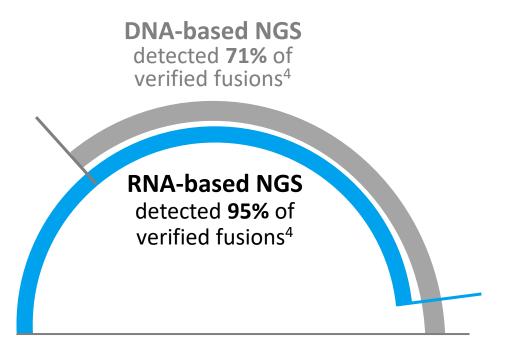

1. Su D et al. J Exp Clin Cancer Res. 2017;36(1):121. doi:10.1186/s13046-017-0591-4 2. Bruno R, Fontanini G. Diagnostics (Basel). 2020;10(8):521. doi:10.3390/diagnostics10080521 3. Personalized Medicine in Oncology. Accessed April 24, 2023. https://www.personalizedmedonc.com/article/next-generation-sequencing-testing-in-oncology/ 4. Yu TM et al. Clin Lung Cancer. 2018;20(1):20-29. doi:10.1016/j.cllc.2018.08.010

NGS Can Detect a Broad Range of Genomic Alterations¹

NGS has emerged as a key tool in profiling many solid tumors²

- NGS is a high-throughput genomic sequencing technology that allows for the simultaneous analysis of numerous alterations that²
 - Can be performed with DNA or RNA³
 - Has several advantages over current conventional methods in detecting pathogenic gene fusions³

1. Singh RR. J Mol Diagn. 2020;22(8):994-1007. doi:10.1016/j.jmoldx.2020.04.213 2. Goswami RS et al. Am J Clin Pathol. 2016;145(2):222-237. doi:10.1093/ajcp/aqv023 3. Bruno R, Fontanini G. Diagnostics (Basel). 2020;10(8):521. doi:10.3390/diagnostics10080521


Not All NGS Tests Equally Detect Gene Fusions

Comprehensive testing with RNA-based NGS, including DNA and RNA sequencing, is recommended to capture what DNA-based NGS alone can miss^{1,2}

RNA-based NGS

is recommended to identify what DNA SEQUENCING can miss¹

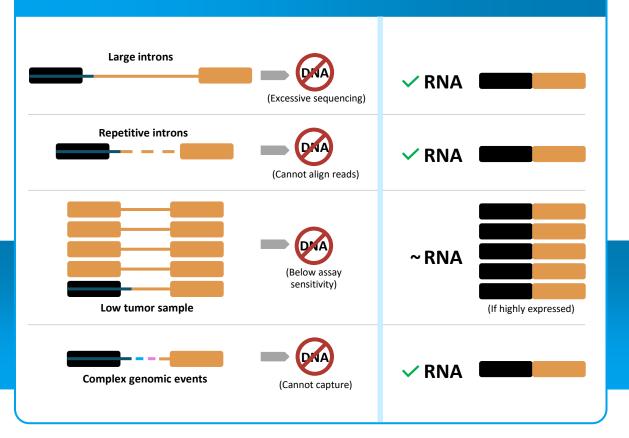
By itself, DNA-based sequencing can result in false-negatives and false-positives, especially when gene fusions are present^{1,3}

Together, **NGS using <u>both</u> RNA + DNA** detected **all** verified fusions in the study^{4,a} (N=2118 fusion events)

NGS, next-generation sequencing.

^aBased on NGS testing of tissue samples.

1. Benayed R et al. *Clin Cancer Res.* 2019;25(15):4712-4722. doi:10.1158/1078-0432.CCR-19-0225 2. Drilon A et al. *J Clin Oncol.* 2021;39(25):2791-2802. doi:10.1200/JCO.20.03307 3. Heydt C et al. *BMC Med Genomics.* 2021;14(1):62. doi:10.1186/s12920-021-00909-y 4. Michuda J et al. *J Clin Oncol.* 2022;40(16 suppl). doi:10.1200/JCO.2022.40.16_suppl.3077


RNA-Based NGS Is More Sensitive Than DNA-Based NGS Alone for Detecting Pathogenic Gene Fusions¹

RNA-based NGS can detect genomic alterations missed by DNA-based NGS^{1,2}

- RNA-based NGS detects gene expression and many structural variants³
 - RNA-based NGS is inclusive of both DNA and RNA sequencing
- RNA-based NGS reduces the technical challenges that occur with DNA-based NGS when sequencing long introns³
- RNA-based NGS can improve the detection rate of DNA-based NGS alone and provide more sensitive detection results^{1,4,5}

NRG1 fusions are **more likely to be missed** UNLESS TESTING WITH RNA-BASED NGS²

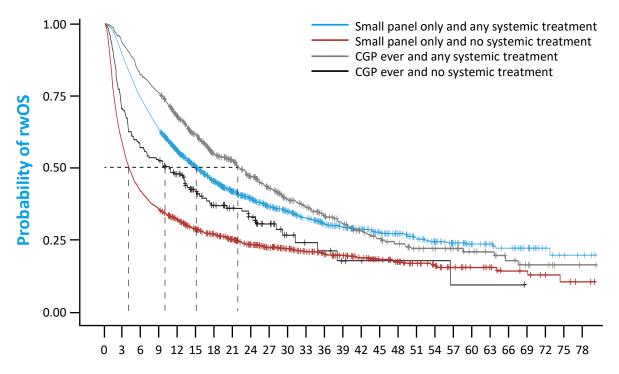
DNA-Based vs RNA-Based NGS for Fusions⁶

1. Benayed R et al. *Clin Cancer Res.* 2019;25(15):4712-4722. doi:10.1158/1078-0432.CCR-19-0225 **2**. Drilon A et al. *J Clin Oncol.* 2021;39(25):2791-2802. doi:10.1200/JCO.20.03307 **3**. Mahmoud M et al. *Genome Biol.* 2019;20(1):246. doi:10.1186/s13059-019-1828-7 **4**. El-Deiry WS et al. *CA Cancer J Clin.* 2019;69(4):305-343. doi:10.3322/caac.21560 **5**. Hindi I et al. *Exp Mol Pathol.* 2020;114:104403. doi:10.1016/j.yexmp.2020.104403 **6**. Davies KD, Aisner DL. *Clin Cancer Res.* 2019;25(15):4586-4588. doi:10.1158/1078-0432.CCR-19-1361

Ordering RNA-Based NGS Is a Key to Obtaining Comprehensive Results^{1,2}

- Commercial vendors are increasing their NGS testing options¹
- However, not all vendors offer combined RNA + DNA NGS
- Clinicians need to stay up to date on testing modalities to achieve the most comprehensive testing results¹

1. Park HJ et al. J Mol Diagn. 2021;23(11):1443-1451. doi:10.1016/j.jmoldx.2021.07.027 2. Benaved R et al. Clin Cancer Res. 2019;25(15):4712-4722. doi:10.1158/1078-0432.CCR-19-0225 3.Natera, Inc. Altera™ Comprehensive Genomic Profiling. Accessed January 13, 2025. https://www.natera.com/oncology/altera 4.Natera, Inc. Altera – Tumor Whole Exome Sequencing and RNA Fusions. Accessed February 7, 2025. https://55933bcmed.s3.amazonaws.com/bcp/files/flexpaper/pdf/signatera-altera-flyer.pdf 5.Caris Life Sciences. Physician Tests. Accessed January 12, 2025. https://www.carislifesciences.com/physicians/physician-tests 6..Foundation Medicine, Inc. FoundationOne®RNA. Accessed January 13, 2025. https://www.foundationmedicine.com/test/foundationone-rna 7. NeoGenomics Laboratories. Neo Comprehensive - Solid Tumor. Accessed January 13, 2025. https://neogenomics.com/test-menu/neo-comprehensive-solid-tumor 8.Exact Sciences Corporation. OncoExTra®. Accessed January 13, 2025. https://www.exactsciences.com/cancer-testing/oncoextra-late-stage-treatment. 9. Thermo Fisher Scientific Inc. Oncomine Dx Express Test. Accessed January 13, 2025. https://www.oncomine.com/express-test. 10.Laboratory Corporation of America® Holdings (Labcorp). OmniSeg® INSIGHT - Improving Outcomes for Patients with Solid Tumors. Accessed January 13, 2025. https://oncology.labcorp.com/cancer-care-team/test-menu/omniseq-insight. 11.Strata Oncology Inc. Strata NGS: Gene List. Accessed January 13, 2025. https://strataoncology.com/wpcontent/uploads/2022/12/Gene List SO-SPEC-003v7.pdf 12.Tempus. xT CDx FDA-Approved Molecular Profiling for Solid Tumors, xR Whole Transcriptome RNA Sequencing. Accessed January 13, 2025. https://www.tempus.com/oncology/genomic-profiling/xt-xr/. 13.Foundation Medicine. Inc. FoundationOne®CDx. Accessed January 13, 2025. https://www.foundationmedicine.com/test/foundationone-cdx. 14.Foundation Medicine, Inc. FoundationOne®Liquid CDx. Accessed January 13, 2025. https://www.foundationmedicine.com/test/foundationone-liquidcdx 15.US Food and Drug Administration (FDA). Guardant360 CDx - P200010/S008. Accessed January 13, 2025. https://www.fda.gov/medical-devices/recently-approved-devices/guardant360-cdx-p200010s008 16.Guardant Health, Inc. Gaurdant360® CDx. Accessed January 13, 2025. https://www.guardantcomplete.com/products/guardant360-cdx 17.Memorial Sloan Kettering Cancer Center. MSK-IMPACT: A Targeted Test for Mutations in Both Rare and Common Cancers. Accessed January 13, 2025. https://www.mskcc.org/msk-impact_18.NeoGenomics Laboratories. NeoTYPE® Discovery Profile for Solid Tumors. Accessed January 13, 2025. https://neogenomics.com/test-menu/neotyper-discoveryprofile-solid-tumors 19. Northstar Onc by Billion to One. Inc. Treat. Monitor. Adapt. with Northstar Select® & Northstar Response®. Accessed January 13, 2025. https://northstaronc.com/ 20.Pathgroup. Endeavor. Accessed January 13, 2025 http://www.pathgroup.com/oncology/endeavor/ 21.Paradigm Diagnostics. Paradigm Cancer Diagnostic (PCDx) Accessed January 13, 2025. https://www.therapyselect.de/sites/default/files/downloads/pcdx/pcdx tumor-profiling-menu en.pdf


Test Name; Commercial Vendor	Analyte	Genes on Panel
Altera TM ; ^{3,4} Natera	DNA/RNA	WES/WTS
Caris [∗] : ⁵ Caris Life Sciences	DNA/RNA	WES/WTS
FoundationOne [®] RNA; ⁶ Foundation Medicine	RNA	318
Neo Comprehensive ^{™;7} NeoGenomics Laboratories	DNA/RNA	517/55 [DNA/RNA]
OncoExTra®; ⁸ Exact Sciences	DNA/RNA	WES/WTS
Oncomine [™] Dx Express; ⁹ Thermo Fisher Scientific	DNA/RNA	46
OmniSeq [®] INSIGHT; ¹⁰ Labcorp Oncology	DNA/RNA	523
StrataNGS [™] ; ¹¹ Strata Oncology	DNA/RNA	417/59 [DNA/RNA]
Tempus xR RNA; ¹² Tempus	RNA	>100
FoundationOne [®] CDx; ¹³ Foundation Medicine	DNA	324
FoundationOne [®] Liquid CDx; ¹⁴ Foundation Medicine	cfDNA	311
Guardant360 [®] CDx; ^{15,16} Guardant Health	cfDNA	74
MSK-IMPACT [®] ; ¹⁷ Memorial Sloan Kettering Cancer Center	DNA	505
NeoTYPE [®] Discovery; ¹⁸ NeoGenomics Laboratories	DNA	336
Northstar Select TM ; ¹⁹ NorthstarOnc/BillionToOne	cfDNA	84
PathGroup Endeavor; ²⁰ PathGroup	DNA	>500
Paradigm Dx PCD <u>x[™];²¹</u> Paradigm Diagnostics	DNA	234
Tempus xT CDx; ¹² Tempus	DNA	648

Note - Dark blue shading indicates RNA analyte; Light blue shading indicates DNA/RNA analyte; Dark grey shading indicates DNA or cfDNA analyte and a limited ability to identify a broad range of gene fusions; WES, whole exome sequencing; WTS, whole transcriptome sequencing.

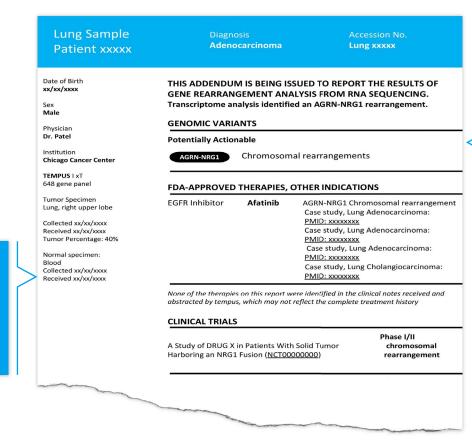
Table is intended to summarize known available tests and may not be all inclusive. All trademarks are property of their respective owners. Not all tests on this list are known to identify *NRG1* fusions.

Comprehensive Genomic Profiling Is Associated With Improved OS in NSCLC Patients¹

rwOS From aNSCLC Diagnosis, by Testing Type and Receipt of Systemic Therapy¹

Time, mo

Treated patients receiving CGP testing during follow-up had greater median rwOS (22 months vs 15 months)¹


aNSCLC, advanced non-small cell lung cancer; CGP, comprehensive genomic profiling; HR, hazard ratio; rwOS, real-world overall survival.

1. Simon G et al. Poster presented at: European Society for Medical Oncology; October 21, 2023; Madrid, Spain. Poster #1422P.

No. at risk at index	Testing/treatment group	Median, mo (95% CI)	
1852	Small panel with any systemic therapy	15 (14-16)	
1253	Small panel and no 4 (4-5) systemic therapy		
603	CGP with any systemic therapy	22 (18-25)	
176	CGP and no systemic therapy	10 (6-15)	

Predictors of rwOS by Testing Type (Cox proportional hazards model)				
	Alive N=1186	Deceased N=2698	HR (95% CI)	
CGP Testing, No. (%)				
No	906 (76%)	2199 (82%)	1.00	
Yes	280 (24%)	499 (18%)	0.80 (0.72-0.89)	

Most NGS Reports Highlight Actionable Information

Higher tumor cell

associated with a

lower probability

of false negatives.

content is

Most reports will provide variant results listed by tier of evidence in order of relevance, and relevant FDAapproved therapies. Certain reports may identify possible clinical trial options.

Methodology

Test material: Tumor DNA/RNA¹

Gene panel: Tempus xT Targeted Panel of 648 genes. Assay v4—a custom oncology testing panel (see detailed list of genes in full report)^{2,3} **Instrument:** Illumina Novaseq 6000¹

Reference genome: GRCh37 (hg19)³

Methodology identifies material tested (DNA and/or RNA)

Methodology details include test description, sequencing instrument, and reference genome used.

1. National Library of Medicine. Updated September 1, 2022. Accessed April 24, 2023. https://www.ncbi.nlm.nih.gov/gtr/tests/558436/overview/ 2. Tempus. Accessed April 24, 2023. https://www.tempus.com/oncology/genomic-profiling/ 3. Tempus. Accessed April 24, 2023. https://www.tempus.com/wp-content/uploads/2022/09/Tempus-Onco Clinical-Report-Sample.pdf

RNA-Based NGS Is Important to Identify a Wide Range of Pathogenic Fusions, Including NRG1¹

- The diversity of NRG1 fusion partners and breakpoints and the large intronic regions of the NRG1 gene can make detection more challenging^{1,2}
- NRG1 fusions may be missed unless testing accounts for these characteristics^{1,2}
- > Technologic and methodologic improvements, such as RNA-based NGS, are reported to capture significantly more actionable fusions^{1,2}

1. Drilon A et al. J Clin Oncol. 2021;39(25):2791-2802. doi:10.1200/JCO.20.03307 2. Jonna S et al. Clin Cancer Res. 2019;25(16):4966-4972. doi:10.1158/1078-0432.CCR-19-0160

Collaboration Is Important to Help Identify Actionable Information in NGS Reports

- Maximizing the clinical use of NGS reports is best achieved through a multidisciplinary approach^{1,2}
- Collaboration between key experts facilitates the most informed decision-making^{2,3}
 - Oncologists
 - Pathologists
 - Pharmacists
 - Radiologists
 - Allied health professionals
- Molecular tumor boards may provide key learning opportunities for identifying actionable genomic alterations^{1,2}

1. Perakis SO et al. ESMO Open. 2020;5(5):e000872. doi:10.1136/esmoopen-2020-000872 2. Malone ER et al. Genome Med. 2020;12:8. doi:10.1186/s13073-019-0703-1 3. Specchia ML et al. BMC Health Serv Res. 2020;20(1):73. doi:10.1186/s12913-020-4930-3

Summary

Key Takeaways

- Precision oncology defines cancer according to its genomic profile rather than by the organ or tissue of origin^{1,2}
 - Pathogenic gene fusions are becoming increasingly actionable³
 - Targeting these genomic alterations may lead to improved outcomes⁴
- NRG1 is an important pathogenic gene fusion that can occur across tumor types and is reported to be associated with poor outcomes, including increased mortality and resistance to currently available therapies in lung cancer⁵⁻⁹
- RNA-based NGS tests can improve identification of genomic alterations over DNA-based methods, including pathogenic gene fusions such as NRG1^{9,10}
- Precision oncology benefits from collaboration between oncologists and pathologists to deliver appropriate genomic analysis that can lead to actionable results and potentially meaningful outcomes for patients^{2,11}

¹. Adashek JJ et al. *Trends Cancer*. 2021;7(1):15-28. doi:10.1016/j.trecan.2020.08.009 **2**. Malone ER et al. *Genome Med*. 2020;12:8. doi:10.1186/s13073-019-0703-1 **3**. Nikanjam M et al. *Cancer*. 2020;126(6):1315-1321. doi:10.1002/cncr.32649 **4**. Zhao S et al. *BMC Med*. 2021;19(1):223. doi:10.1186/s12916-021-02089-z **5**. Drilon A et al. *Cancer Discov*. 2018;8(6):686-695. doi:10.1158/2159-8290.CD-17-1004 **6**. Jonna S et al. *Clin Cancer Res*. 2019;25(16):4966-4972. doi:10.1158/1078-0432.CCR-19-0160 **7**. Rosas D et al. *Cancers (Basel)*. 2021;13(20):5038. doi:10.3390/cancers13205038 **8**. Shin DH et al. *Oncotarget*. 2016;7(43):69450-69465. doi:10.118632/oncotarget.11913 **9**. Drilon A et al. *J Clin Oncol*. 2021;39(25):2791-2802. doi:10.1200/JCO.20.03307 **10**. Benayed R et al. *Clin Cancer Res*. 2019;25(15):4712-4722. doi:10.1158/1078-0432.CCR-19-0225 **11**. Perakis SO et al. *ESMO Open*. 2020;5(5):e000872. doi:10.1136/esmoopen-2020-000872

Thank you!

©2025 PARTNER THERAPEUTICS All rights reserved. US-BEN-2500080 v4

Visit **FindTheFusions.com** to download this presentation.