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FIGHTING CANCER STARTS BY FINDING HOW ARE GENOMICS CHANGING THE FUTURE

ITS FINGERPRINT OF ONCOLOGY?

Oncology is evolving from thinking about cancer according to site Understanding the genomic and oncogenic drivers of a patient’s

of origin to thinking about cancer according to tumor genomics'?® cancer can help clinicians develop a more tailored approach to care®7:1°
Tumors can have distinct histologies, sites of origin, and genomic signatures. Over the course of the past As the understanding of cancer biology has advanced, both the quantity and rate of discovery of genomic

decade, the understanding of the centrality of tumor genomics has been increasingly driving oncology, alterations have accelerated.? In response, investigators are meeting the demand for ways to target them.2%

including disease classification, patient selection, and clinical trial design.” With 18 new FDA-approved More recent studies have estimated higher percentages of actionable alterations, which are only expected to
personalized treatments in 2024, these therapies comprise at least a quarter of all new drug approvals increase as new molecular entities are developed.®1?-17

annually for the past decade. Just over 10 years ago, they represented less than 10% of approvals. This rapid
growth underscores the increasingly central role of tumor genomics in guiding treatment decisions.?
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The prevention, diagnosis, and management of cancer is being revolutionized by precision oncology, I | ,(,,//
which defines cancer by underlying genomic alterations.'-1° —
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profiling a significant percentage of patients with cancer'?-'7
While treatments are still being developed, it is estimated that ~38% of patients have an actionable
genomic alteration.??
A genomic alteration is typically defined as actionable when there is a potential therapeutic target that
can mitigate the oncogenic consequences of the disrupted pathway; although across clinical studies, the
definition of actionable can vary substantially.'?1”
The goal of precision oncology is to optimize and tailor each patient’s treatment approach based on the Point mUtatlonS_ and pE.itI_‘logenIC gezrs‘e fusions are among the most common
genomic profile of the patient’s cancer.® genomic alterations driving cancer

Point mutations (eg, KRAS, BRAF, EGFR) are changes in DNA base pairs.?2*

Pathogenic gene fusions (eg, ALK, NTRK, ROS1, RET, NRG1) typically occur when 2 different genes join to
form an abnormal hybrid gene.?2%2¢ Genes involved in fusions are not located next to one another but are from
separate chromosomal loci.?” Gene fusions can be comprised of multiple fusion partners.?

FISH, fluorescence in situ hybridization; IHC, immunohistochemistry; RT-PCR, reverse transcription-polymerase chain reaction.




PRECISION ONCOLOGY PROVIDES A UNIQUE OPPORTUNITY

T0 IMPROVE CLINICAL QUTCOMES™ 26233

Targeting genomic alterations can lead to better outcomes
for patients

Precision oncology benefits have been reported to potentially include significant improvements in objective
response rate (ORR), overall survival (OS), progression-free survival (PFS), and quality of life (QOL) for certain
well-characterized molecular alterations with approved targeted therapies compared with conventional
chemotherapies approved for the same or overlapping indication and line of therapy.'571%12 With improved
outcomes, patients may potentially be able to avoid cycles of trial and error, as well as adverse physical and
financial impacts from the cumulative effects of multiple rounds of conventional therapies.®

From 2006 to 2018, there was a 7x increase in the number of patients estimated to benefit from
genome-based therapy.®

In both of the following studies on NSCLC and pancreatic cancer, OS was improved in patients who received
therapies directed toward their specific alterations.!”:32

Overall survival in NSCLC

In a study of 938 patients with metastatic lung adenocarcinomas and a Southwest Oncology Group (SWOG)
performance status of 0 through 2, tumors were tested for 10 oncogenic drivers. The study collected
information from patients, therapies, and OS. Three-hundred sixty (38%) patients had no identified oncogenic
driver, while 578 (62%) had actionable oncogenic drivers. Of those with actionable oncogenic drivers,

OS in NSCLC with targeted vs nontargeted therapy'”

Median survival (95% CI)
Oncogenic driver + targeted therapy, OS of 3.49 years

1.0 (95% Cl, 3.02-4.33)
Oncogenic driver + nontargeted therapy, OS of 2.38 years
(95% Cl, 1.81-2.93)
0.8 No oncogenic driver, OS of 2.08 years (95% Cl, 1.84-2.46)
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NSCLC, non-small cell lung cancer.

decision-making in cancer care for 318 patients (55%) was not impacted, while 260 patients (45%) had

identified drivers that impacted cancer management. Patients who received a matched therapy for their
actionable molecular alterations had longer OS of 3.49 years (95% Cl, 3.02-4.33) vs 2.08 years (95% Cl,
1.84-2.46) for those with no known oncogenic drivers (log-rank P<.001)."”

Overall survival in pancreatic cancer

Of 1856 patients with pancreatic cancer who were referred to the Know Your Tumor (KYT) program between
June 16, 2014, and March 31, 2019, 1082 (58%) received personalized reports based on their molecular
testing results.®?

With a median follow-up of 383 days (IQR, 214-588), patients with actionable molecular alterations who
received a matched therapy (n=46) had significantly longer median OS than patients who only received
unmatched therapies (n=143; 2.58 years [95% CI, 2.39 to not reached] vs 1.51 years [95% Cl, 1.33-1.87],
respectively; HR=0.42 [95% CI, 0.26-0.68]; P=.0004).3

The 46 patients who received a matched therapy also had longer OS than the 488 patients who did not
have an actionable molecular alteration (2.58 years [95% ClI, 2.39 to not reached] vs 1.32 years [95% ClI,
1.25-1.47], respectively; HR=0.34 [95% CI, 0.22-0.53]; P<.0001). Median OS did not differ between patients
who received unmatched therapy and those without an actionable molecular alteration (HR=0.82 [95% ClI,
0.64-1.04]; P=.10).2

OS in pancreatic cancer with matched vs unmatched therapy®?

Matched therapy group vs unmatched therapy group
HR=0.42 (95% Cl, 0.26-0.68); P=.0004
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THE CLINICAL CONSEQUENCES OF
PATHOGENIC GENE FUSIONS

NRGT: A DANGEROUS PATHOGENIC GENE FUSION

Pathogenic gene fusions are a contributing factor in
1 in 6 cancers®
Among 9624 patients who had their tumors genetically tested with RNA-based sequencing, pathogenic

gene fusions were found in 16.5% of samples.*® Fusions can occur across tumor types and account for
approximately 20% of cancer morbidity.?5:%3-37

Pathogenic gene fusions are an independent poor prognostic factor

A study of 594 patients with fusion-driven lung cancer measured outcomes over time. Patients with a high
number of fusions had shorter median OS (35.6 months; 95% CI, 27.2-43.9) compared with

patients with an intermediate (49.5 months; 95% CI, 23.9-75.1) or low number of fusions (62.3 months;
95% Cl, 44.6-80.1; likelihood ratio test, P=.008). This relationship persists even when controlled for factors
such as age, sex, stage, cancer type, and smoking status.®

In an analysis of 79 patients with identified gene fusions, poorer outcomes were observed in patients with
pathogenic gene fusions who were not matched to an FDA-approved fusion-targeted therapy.®”
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PFS outcomes for
treatments matched
to gene fusions vs
other targets®

Median PFS, mo
[}

Treatment Treatment Unmatched
matched to matched to treatment
fusions other alterations (n=42)
(n=25) (n=11)*

aTwelve of the 79 patients received treatment matched to other alterations, but 1 patient in the matched group had an unclear match
and was excluded from the pairwise comparison analysis.*”

A pathogenic gene fusion receiving increasing attention is
NRG1, which has been associated with aggressive features
and poor outcomes2°:36:38-41

NRG?1 is a key signaling protein involved in proliferation and survival. Normal NRG1 signaling is tightly
controlled.®*3 NRG1 is normally inactive until it is cleaved by proteases at the cell surface. Extracellular

binding of NRG1 activates tightly regulated cell growth pathways, including PI3K, AKT, and mTOR. When
these pathways are dysregulated, they are capable of becoming oncogenic drivers.3%%

Abnormal NRG1 fusions can lead to uncontrolled growth and cancer.®® They can induce the formation

of heterodimers, leading to the pathologic activation of signaling pathways and abnormal cell proliferation.384!

NRG1 fusions are heterogenous and can have many different partners and breakpoints.?5%% NRG7+ NSCLC

possesses histologic features associated with growth, recurrence, invasiveness, metastasis, resistance
to therapy, and worse prognosis.®?5%:3%-40 NRG71+ NSCLC responds poorly to available therapies and is
associated with lower OS, DFS, and PFS.9252629-41

Pathogenic NRG1 fusions are capable of driving cancer growth3>-3

NRG1 formation and signaling
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Pro-NRG1 is cleaved to active NRGT,
allowing it to bind to and promote
receptor dimerization and signaling.®

DFS, disease-free survival; HER2, human epidermal growth factor receptor 2; HER3,

NE, not estimable; NRG 1+, neuregulin 1 fusion positive; WT, wild type.

NRG1 fusions remain anchored in the cell
membrane where they bind to and activate
HERS, leading to dimerization with HER2 and
downstream oncogenic signaling.*?

human epidermal growth factor receptor 3;



NRGTAGROSS TUMOR TYPES

NRG1 gene fusions have been identified across many solid tumors
and generally occur in the absence of other driver mutations®-3>3

NRG1 fusion frequency estimates

0/,)42,43
* Overall (<1%) Overall (<2%)*
Fnrlghmeqt | Enrichment
”(;’as've mucinous lung KRAS wild-type pancreatic
— adenocarcinoma Pancreatic cancer (up to 3%)%47

(up to 31%0)°4445 cancer

Overall (<1%)*
Breast, cholangiocarcinoma, colorectal, gallbladder, sarcoma, ovarian cancers,
renal cell carcinoma, etc*

NRG1 fusions are associated with poor outcomes and resistance to therapies®

In a retrospective global registry study, NRG7+ NSCLC was associated with limited response to available
therapies. Of 110 patients with NRG7+ lung cancer included in the eNRGy1 global multicenter registry, 103
had adenocarcinoma, of which 59 (57%) were IMA, 29 (28%) were nonmucinous, and 15 (15%) were “other”
or “unspecified.”?®

Activity of systemic therapy in NRG1+ NSCLC?52 ORR, % Median PFS, mo (95% CI)
Platinum-doublet chemotherapy (n=15) 13 5.8 (2.2-9.8)

Taxane-based chemotherapy (n=7) 14 4.0 (0.8-5.3)

Combination chemotherapy and immunotherapy (n=9) 0 3.3 (1.4-6.3)

Single-agent immunotherapy (n=5) 20 3.6 (0.9-undefined)

Targeted therapy with kinase inhibitor (n=20) 25 2.8 (1.9-4.3)

3Patients either diagnosed with or who developed metastatic disease during the course of their disease.?

AGGRESSIVE HISTOLOGICAL FEATURES

NRG1 fusions have aggressive histological features

Chang et al conducted a molecular and clinicopathologic analysis of 200 cases of pulmonary IMA diagnosed
between 2009 and 2019. Genomic analysis was conducted using hotspot mutation testing, targeted DNA
sequencing, and targeted RNA sequencing. The investigators found that 92% of the IMA tumors that were NRG7+
possessed aggressive histological features associated with poor outcomes compared with 54% of KRAS+ tumors
and 61% of tumors with other driver alterations.*** Findings were consistent with other studies suggesting that
NRG1+ lung and gastric tumors are associated with increased infiltrative tumor growth, as well as lymphovascular,
neural, and desmoplasmic stromal invasion, which are associated with poor outcomes.?®

Growth

In the same study, Chang et al also measured primary tumor size pathologically in resected tumors and
radiologically in unresected tumors. Among all tumors tested, gene fusions were identified in a total of 24 IMAs,
including 12 (50%) with NRG1, 6 (25%) with ALK, 2 (8%) with ROS17, and 1 each with ERBB2, NTRK1, FGFR2, and
FGFRS3. The investigators found dramatically increased primary tumor size at diagnosis for NRG1+ vs KRAS+ and
other IMA tumors (7.7 cm vs 3.9 cm vs 5.5 cm, respectively; P=.0004).° This study documented more aggressive
histological and clinical characteristics of IMAs with NRG1 fusions. The presence of these characteristics has been
found to correlate with worse prognosis for patients with IMA.4

Migration

Shin et al studied a cohort of 59 patients with IMA who underwent curative surgical resection, 16 of whom had NRG1
fusions. The majority of cases with NRG7+ samples had pathological stage | disease. Investigators found that an
SLC3A2-NRG1 fusion promoted increased tumor volume, as well as cancer cell proliferation and migration, using

a shedding and juxtacrine method through ERBB2-ERBB3 heterocomplexes. This association strengthened with
increased NRG1 fusion protein expression.© Cancer cell migration induced by the SLC3A2-NRG1 fusion protein

was due to an increase in pFAK and pSrc by the SLC3A2-NRG1 fusion protein—this was not induced by SLC3A2-
NRG1A EGF. Results indicated that the EGF domain in the NRG1 part of the SLC3A2-NRG1 fusion augmented cell
proliferation and migration.®

EGF, epidermal growth factor; IMA, invasive mucinous adenocarcinoma.

®In a study by Chang et al (2021), samples from 200 IMA cases were reviewed by 2 thoracic pathologists. Primary tumor size was measured
pathologically in resected tumors and radiologically in unresected tumors. Presence of tumor necrosis and stromal invasion, defined by stromal
desmoplasia surrounding invasive glands or nests of tumor cells, were recorded.*

cShin et al (2016) tested 59 IMA samples obtained from patients who underwent curative surgical resection, identifying 13 SLC3A2-NRG1 fusions

(27% frequency). Tumor xenografts in nude mice were generated for measuring tumor volume and tumor weight. Tumor proliferation, volume, and
weight were analyzed in cancer cells ectopically expressing SLC3A2, NRG1, and SLC3A2-NRG1.°



UNIQUE PATTERNS OF METASTASIS

Metastatic potential in NRG7+ tumors

IMA has been reported to represent 3% to 5% of adenocarcinomas overall. A recent study evaluated the
histology and genomic profiles of tissue samples from 200 cases of IMA. KRAS alterations were identified in

151 of the IMA samples, and gene fusions were identified in 24 samples. Half of the fusions (12) were NRG1+.

NRG1 fusions were associated with significantly lower cigarette exposure compared with KRAS fusions
(5.9 vs 20 pack-years, respectively). Presence of metastasis at diagnosis, as well as the frequency of
extrathoracic metastases, were higher for NRG1 vs KRAS.*

NRG1+ tumors are

10x more likely to have
concurrent intra- and
extrathoracic metastases
than KRAS+ tumors (50%
vs 5%, respectively)*

NRG1+ tumors have a
1 higher rate of metastasis at
diagnosis compared with
KRAS+ tumors (67 % vs
32%, respectively)**

Higher rate of
metastasis

Similar results were observed in a study by Drilon et al about the clinicopathologic features of NRG1 fusion-
driven lung cancers, in which data were collected from a consortium of 22 centers from 9 countries. At the
time of diagnosis, most (71%, n=58/82) patients had nonmetastatic (stages I-lll) disease. In patients with
metastatic NRG17-driven disease diagnosed at any time during their disease course (n=44), extrathoracic
metastases were found in 43% (n=19/44) of patients.?®

Most common sites of NRG1+ extrathoracic metastases in IMA2®

T L

THE EVOLUTION OF GENOMIC TESTING

Conventional testing methods

RT-PCR, FISH, and IHC are biomarker screening methods that were developed to detect single
molecular targets and may fall short of detecting pathogenic gene fusions.3+4849

Specifically, limitations include:

+ Inability to identify the full breadth of genomic alterations3+%°

- Limited ability to identify the full breadth of fusion partners and breakpoints®44°
- May require a significant amount of tissue and can exhaust tissue samples®"

The advent of next-generation sequencing

Since the completion of the National Human Genome Project was announced in 2003, genome sequencing
technology has improved dramatically. In particular, the decade that followed saw revolutionary advances in
sequencing technologies that fundamentally changed the nature of genomics. The advent of “next-generation”
sequencing in 2008 welcomed significant improvements in both accuracy and efficiency, bringing with it a
rapid reduction in costs and turnaround time.5?




NEXT-GENERATION SEQUENCING CAN DETECT A DNA-BASED NGS ALONE CAN MISS PATHOGENIC

BROAD RANGE OF GENOMIC ALTERATIONS=>4%3 GENE FUSIONS""*®

NGS has emerged as a key tool in profiling many solid tumors®3 Comprehensive testing with RNA-based NGS, including DNA and
NGS is a high-throughput genomic sequencing technology that allows for RNA sequencing, is recommended to capture what DNA-based

the simultaneous analysis of numerous alterations; NGS can be DNA-based, NGS alone can miss®>®’
RNA-based, or both*-5

NGS is a young field, with the first machines entering the market less than 2 decades ago. In less than

a decade, NGS became a cornerstone of molecular biology and genetics. More recently, NGS systems DNA-based NGS
have been introduced that allow for massively parallel sequencing reactions. These systems are capable detected ~71% of
of analyzing millions, or even billions, of sequencing reactions at the same time, dramatically increasing verified fusions®®

the efficiency of sequencing genomes. Unlike some tools, NGS is flexible and can be applied in different
situations, ranging from exome to small RNAs.6%%¢

The NGS process®®

RNA-based NGS
detected ~95% of

I — verified fusions®®
I —
I —
I —
Nucleic acid extraction and isolation Together NGS using both RNA + DNA
detected all verified fusions in the study
—- —_— _—_— — (N=2118 fusion events)®=
el — I |
== 1 e Y n DNA-based sequencing can lead to false-negative and false-positive results
- ‘ —“ in a variety of cases, particularly in the detection of gene fusions.344857-60
Fragmentation and library creation
— Comprehensive genomic sequencing—a more efficient option that sequences both RNA and DNA
r— e s simultaneously —should take place at diagnosis, or as early as possible in the course of disease, to
I I e maximize the range of treatment options available to patients.2%°
| | I
[ | I .
TTAGGAAACC GTTTCATTCAGTAAAAGGAGGAAA

Amplifying and sequencing the libraries

aBased on NGS testing of tissue samples.*®




WHY IS RNA-BASED NGS MORE COMPREHENSIVE RNA-BASED NGS IS ESSENTIAL FOR OPTIMIZING

FOR DETECTING PATHOGENIC GENE FUSIONS?°>-%3 DETECTION OF MANY NRGT FUSIONS®*>%

Advantages of RNA-based NGS Detecting NRG1 pathogenic gene fusions

+ Detects gene expression and many structural variants?-3457:61 + NRG1 fusions are more likely to be missed without the use of RNA-based NGS57%9-¢3

+ The diversity of NRG1 fusion partners and breakpoints and the large intronic regions of the NRG7 gene

+ Reduces many of the technical challenges involved in sequencing long introns*8:57:59-63
can make detection more challenging*857.59-6163

+ Can improve the detection rate of DNA-based NGS alone and provide more comprehensive
detection results6.57.59-63

+ May enable oncologists to match therapy to the driving fusion, which wouldn’t have otherwise been

identified, potentially leading to improved clinical responses® In a retrospective study by the Memorial Sloan Kettering Cancer Center,

RNA-based NGS detected more NRG1 fusions than

NR G 1 DNA-based NGS*®°

detection Both DNA-based and RNA-based NGS were performed on 30 NRG7+ IMA samples. Of these, 28
were detected by RNA-based NGS but not DNA-based NGS. The remaining 2 were detected by both.
Four additional samples that did not undergo DNA-based NGS were detected by RNA-based NGS.°

DNA-based vs RNA-based NGS for fusions®
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— @ RNA mmm
(Excessive sequencing) Detection of NRG1 fusions across tumor types (MSKCC experience)®®
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RNA S s
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Of the 60,000 tumor specimens that have undergone molecular profiling by DNA-based NGS at MSKCC,
NRG1 fusions were detected at a rate of just 20% of the estimated prevalence in the population. This further
indicates that DNA-based NGS by itself is not the optimal approach for the comprehensive detection of NRG1
fusions. It can be a challenge to detect NRG17 fusions with standard assays, and the tests that can detect
them are not always performed.®°

MSKCC, Memorial Sloan Kettering Cancer Center; NOS, not otherwise specified.




COMPREHENSIVE GENOMIC PROFILING IS

ASSOCIATED WITH IMPROVED OUTCOMES® ITIS TIME TO TEST FOR NRGT FUSIONS

The impact of genomic profiling NCCN Clinical Practice Guidelines in Oncology
(NCCN Guidelines®) include RNA-based NGS®°-¢

- Pancreatic adenocarcinoma: RNA-based NGS is a preferred option to detect gene fusions®®

A real-world, retrospective study evaluated the clinical impact of CGP vs small panel testing in patients
with aNSCLC. Using data from community oncology settings, researchers compared outcomes related to

biomarker detection, use of targeted therapies, and rwQOS.%
+ NSCLC: RNA-based NGS should be considered to maximize detection of fusion events®®
Patients tested with CGP were more likely to have actionable biomarkers identified (32% vs 14%; P<.001)

and to receive matched targeted therapies (39% vs 29%; P<.001).%4

rwOS from aNSCLC diagnosis, by testing type and receipt of systemic therapy® . . . L .
Detecting NRG1 fusions through comprehensive testing is a critical

1.0 == CGP ever and any systemic treatment step toward optimizing care and potentially improving outcomes®5¢
== CGP ever and no systemic treatment
== Small panel only and any systemic treatment
== Small panel only and no systemic treatment
» 0.75 —
E
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AT o o testing during follow-up had Instrument: lllumina sequencing’
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. (22 months vs 15 months)* collicontantlls Reference genome: and reference
CGP testing, No (%) associated with a GRCh37 (hg19)® genome used
No 906 (76%)  2199(82%)  1.00 lower probability of
false negatives.
Yes 280 (24%) 499 (18%) 0.80 (0.72-0.89)
aNSCLC, advanced non-small cell lung cancer; CGP, comprehensive genomic profiling; HR, hazard ratio; rwOS, real-world overall survival. NCCN, National Comprehensive Cancer Network.
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Detecting pathogenic gene fusions in cancer is critical to
help improve outcomes for patients'6:3344

Oncology is evolving from thinking about cancer according
to site of origin to thinking about cancer according to
tumor genomics.'*

» Pathogenic gene fusions are becoming increasingly
actionable? 2

* Targeting these genomic alterations may potentially
lead to improved outcomes’”*2

NRG1 is an important pathogenic gene fusion
that can occur across solid tumors and is associated
with poor outcomes and resistance to therapies in
NRG1+ NSCLC.253%43

RNA-based NGS is capable of supporting broader
identification of genomic alterations, including
pathogenic gene fusions such as NRG7, when
compared with DNA-based methods.*8:53:5457
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